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European competitiveness in information  
technology and long-term scientific performance 

Andrea Bonaccorsi 

The reasons behind the poor competitiveness of the European information technology (IT) industry vis-
à-vis the US one have been discussed many times. This paper suggests that the long-term 
competitiveness of science-based industries is dependent on the ability of the underlying scientific base 
to support fast growing, turbulent and proliferating search regimes. This requires institutional 
mechanisms that foster severe selection of scholars from a large base, student and researcher mobility, 
and strong institutional complementarity with user industries. The paper compares the history of IT in 
the USA, Germany, the UK and France. Based on the analysis of the curriculum vitae of the top 1,000 
scientists in computer science, it shows that these conditions were only met in the US academic 
system. 

HAT EUROPEAN INDUSTRY IS NOT 
globally competitive in IT is well known, and 
has been the subject of many analyses and 

policy reflections at government and European 
Commission level. This assessment is based on con-
verging data on some innovation inputs (R&D ex-
penditure of firms), intermediate outputs (patents) 
and final outputs (international trade), although on 
different time scales. 

In recent years, the European Commission has pro-
vided highly informative company-level analyses of 

R&D investment, with data related to 2004 (European 

Commission, 2005) and to 2009 (European Commis-
sion, 2010). In the two categories of IT hardware and 

software, there were a few European companies that 
spent more than €1 billion on R&D in the year 2004. 

In the IT hardware category, just four companies, 
from Finland (Nokia), Sweden (Ericcson), France 

(Alcatel) and Germany (Infineon Technologies) are 

recorded against six in the USA (Intel, HP, Cisco, 
Motorola, Texas Instruments and Sun) and four in  

Japan (Hitachi, Toshiba, NEC and Fujitsu).1 The situ-
ation is even worse in software and computer ser-
vices. SAP was the only European company spending 

more than €1 billion for R&D, while Microsoft, IBM 

and Oracle combined spent ten times that amount. In 

addition, there were 26 companies from the USA and 

three from Japan spending more than €100 million, 
against only six in Europe. The 2010 Scoreboard  

(European Commission, 2010) has a different sectoral 
classification, but confirms the overall picture. In the 

semiconductors sector, within the top 20 R&D inves-
tors we find four European companies (STMicroelec-
tronics, NXP, Infineon Technologies and ASML) 

against 10 from USA, two from Japan and four from 

Asia and other countries. In the software sector there 

are 14 US companies and six from Europe (SAP, 
UBIsoft Entertainment, Dassault Systemes, Sage, 
Amdocs and Invensys). There are few European 

companies who are not only in the top list of software 

producers, but also in the wave of internet-related in-
novators, or in the small group of successful startups, 
such as Google, e-Bay or Amazon, surviving the new 

economy bubble, or in the top list of companies offer-
ing IT-related services on a global scale. On a longer 

historical scale, companies which used to be national 
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champions, such as Bull in France, Olivetti in Italy, 
Siemens Nixdorf in Germany, or ICL in the UK, are 

now virtually out of the market (Campbell-Kelly, 
2003).  

Second, data on patents may be criticized as less 
relevant for some subsectors of IT, such as software, 
but are clearly a crucial indicator for hardware-
related sectors. The Key Figures 2007 Report, using 
data from the European Patent Office, stated that: 

…the US is ahead of the EU in four out of six 
high-tech areas: (1) computers and automated 
business equipment, (2) micro-organisms and 
genetic engineering, (3) lasers, and (4) semi-
conductors. On the other hand, EU leads in  
aviation and in communication technology. 
(European Commission, 2007: 54) 

Looking at patent data, it appears that in the patent 
class computer and automated business equipment 
the share of the EU-27 (the current 27 members of 
the EU) increases from 20.2% in 1995 to 25.8% in 
2003, while in the same period the share of the USA 
declines from 50.3% to 43.5%. While the gap 
shrinks, it is still very large. Extending the analysis 
to 2005 on data from the Patent Cooperation Treaty 
(PCT), and using the larger definition of information 
and communication technologies (ICT), the Key 
Figures 2008–2009 Report showed that the share of 
EU-27 of the world ICT patent applications decreas-
es from 31.0% in 2000 to 24.8% in 2005 (European 
Commission, 2008: 68). The general comment was 
that: 

EU-27 is less specialised in high technology 
fields such as ‘pharmaceuticals’, ‘computers, 
office machinery’, ‘telecommunications’ and 
‘electronics’ than in medium technology fields 
such as ‘general machinery’, ‘machine tools’, 
‘metal products’ and ‘transport. (European 
Commission, 2008: 69) 

Over a longer period, Dalum et al. (1999) construct-
ed the revealed technological advantage (RTA) indi-
cator, as the share of a patent class in a country’s 
overall patenting divided by the share of this patent 
class in total US patenting. Values below one indi-
cate negative specialization. On the basis of US  
patents in the period 1969–1994, they showed that 
the RTA of Europe in ICT steadily decreased vis-à-
vis competitors, from 0.86 in 1969–1974 to 0.84 in 
1979–1984 to 0.73 in 1989–1994. 

Furthermore, Dalum et al. (1999) calculated the 
long-run market shares in international trade for core 
ICT hardware, including computers and peripherals, 
semiconductors, and telecommunications equipment. 
Europe declined from 63% in 1961 to 41% in 1994, 
while in the same period Japan rose from 4% to  
30% and the USA defended its share, from 27% to 
25%. 

Thus different indicators, although with different 
time scales, converge on supporting a broad picture 
of a competitiveness gap. Two qualifications are 
needed, however, which will be important for our  
interpretation. 

First, European competitiveness is much stronger 
in telecommunications, where Nokia dominates sev-
eral segments of the market and Ericcson is a large 
player (Santangelo, 1998; Hultén and Molleryd, 
2003; Cantwell and Santangelo, 2003). In this paper 
we focus our attention on the narrow definition of IT 
(excluding communication technology), since ex-
plaining the causes of differential performances of 
Europe in the two broad areas of ICT would deserve 
a dedicated effort. 

Second, while there are few European global 
players in IT, several companies are strong in niches 
of the market (Casper et al., 1999). As the 2010 
Scoreboard notes:  

The EU has some excellent software companies 
with strong positions in their subsectors or 
niches – there are just too few compared to the 
US. Examples include SAP in enterprise soft-
ware, Autonomy in unstructured search and 
Sage in accounting and customer relationship 
management software for smaller businesses. 
(European Commission, 2010: 37) 

In addition, Europe is relatively strong in embedded 
software, particularly in real-time applications for 
industrial automation, thanks to its leadership in the 
fields of mechanical and electrical engineering. 
However, this software is not typically sold sepa-
rately from the equipment. Again, the reasons be-
hind large differences in performance between large 
markets and niches are worth exploring. 

Linking several European gaps:  
ICT competitiveness, productivity and growth 

The weak competitiveness of the European IT indus-
try is considered worrisome for several reasons, 
which extend far beyond the industrial policy  
domain. In fact, it has been shown that there is a re-
lationship between these technologies, the slowdown 
in productivity in the European economy since the 
mid-1990s and the opening of a wide productivity 
gap with the USA since then. In turn, the productivi-
ty gap is considered to be the main source of the gap 
in rates of growth between the two economies. It 
should be noted that the wider definition of ICT is 
usually adopted in this literature.  
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Initial contributions pointed to the larger size of 
the ICT sector in the US industry and the earlier 
adoption of ICT in the US manufacturing industry as 
the main factors (Jorgenson and Stiroh, 2000). Sub-
sequent analyses, based on sector-level data, showed 
that a large part of the gap is due to large gains in 
productivity in the US market service sector, which 
is a heavy user of ICT. Of particular importance is 
the stream of research originated by the construction 
of industry-level productivity data in the KLEMS 
project, supported by the European Commission 
(O’Mahony and Timmer, 2009; Timmer et al., 
2010). Inklaar et al., (2003) and Timmer and van 
Ark (2005) found that the US lead in labour produc-
tivity is almost fully explained by two causes, both 
related to ICT: the deepening of ICT capital and the 
increase in total factor productivity originated from 
the production of ICT goods. O’Mahony and Vecchi 
(2005) also found a strong effect of ICT on the over-
all growth of output in the case of the USA. In the 
summary words of Van Ark et al. (2008: 41): 

…the resurgence of productivity growth in the 
United States appears to have been a combina-
tion of high levels of investment in rapidly  
progressing information and communications 
technology in the second half of the 1990s, fol-
lowed by rapid productivity growth in the mar-
ket services sector of the economy in the first 
half of the 2000s. Conversely, the productivity 
slowdown in European countries is largely the 
result of slower multifactor productivity growth 
in market services, particularly in trade, finance, 
and business services.  

A related body of literature has investigated the 
complementarity between investment in ICT and or-
ganizational change in companies, again pointing to 
a gap between US and Europe (Bloom et al., 2007; 
van Reenen and Bloom, 2007).  

In general, the computer technology is considered 
a classical example of a general purpose technology, 
whose impact on the economy is pervasive, trans-
versal, and deep (Bresnahan and Trajtenberg, 1995). 
Ten Raa and Wolff (2000) identified the sectors that 
are most responsible for the growth in total factor 
productivity in the period 1958–1997 in the USA, 
and discovered that the sectors accounting for the 
largest effect were computer and office equipment 
and electronic components. In addition, these sectors 
showed the largest spillover effects to other indus-
tries, including services (Mamuneas, 1999). For  
these reasons the weakness of the European industry 
is generally considered with concern. 

But why did the US economy adopt ICT earlier 
and more productively, first in the manufacturing 
sector, then in the market service sector? An inter-
esting question is whether (but also why) there is a 
relationship between the performance of domestic 
ICT-goods producers and the spread of adoption of 
ICT in non-ICT sectors. This link is not at all  

obvious. The better performance of US ICT-goods 
producers might have also benefitted European 
adopters, albeit with a short delay. As we will see, 
this issue can be better explained within the frame-
work offered by this paper. 

In search of an explanation for the  
competitiveness gap 

There are several possible explanations for the com-
petitiveness gap suffered by the European IT indus-
try (we now turn back to the narrow definition). 
First, the role of military procurement and defence-
related R&D should not be overlooked. Many tech-
nological breakthroughs, including the original idea 
of the internet, originate from this source (Flamm, 
1988; Lowen, 1997). Since the USA devoted a large 
share of R&D to military uses, it is reasonable to ex-
pect positive spillovers in the IT industry (Alic et al., 
1992). Second, one might call attention to the dra-
matic role of large national markets in the estab-
lishment of technological standards. Since almost all 
IT-based industries are subject to strong network ex-
ternalities, once standards are established a lock-in 
effect would give the leaders a long-term advantage. 
The case of Microsoft in operating systems is an ob-
vious example. Not surprisingly, in mobile phone 
technology Europe gained a leadership position also 
because of a first mover advantage in defining the 
global system for mobile communications (GSM) 
standard. Thus market size may be considered a nat-
ural advantage for US industry, one that cannot be 
modified by will (Mowery, 1996; Campbell-Kelly, 
2003). Third, one might refer to the linguistic heter-
ogeneity of European countries to explain the diffi-
culty in producing standardised or packaged 
products in software. According to this interpreta-
tion, European software companies would be global-
ly competitive, but they specialize in customised 
software products, which require adaptation to the 
customer and the use of national languages. In addi-
tion, European markets are still fragmented in terms 
of regulation (particularly in services), standardiza-
tion and professional practices, creating obstacles to 
international expansion of firms, increasingly to 
young innovative firms (Conway and Nicoletti, 
2006). Fourth, the corporate model is also relevant: 
many European players in IT in the 1980s and 1990s 
were vertically integrated companies in large con-
glomerates which were not responsive to the stock 
exchange market, which developed IT mainly for 
their internal corporate, that is, captive, market. This 
was a major long-term strategic mistake, insofar as it 
insulated IT business units from harsh competition 
in global markets (Becchetti, 2001). Vertical con-
glomerates in countries with rigid labour markets 
tend to keep obsolete technologies alive for longer 
periods. 

All these explanations have some truth in them 
and should be carefully considered. It is not the pur-
pose of this paper to review the debate on European 
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competitiveness in the IT industry. Rather, we wish 
to suggest another factor, which has been somewhat 
neglected in this debate. We suggest that the long-
run origins of competitiveness in a high technology 
industry are to be found in the excellence of the un-
derlying scientific base. This does not translate at all 
linearly into new products and services. Much more 
than that, it nurtures the ecology of ideas and visions 
that give origin to innovation. There is a hidden link 
between the quality and dynamics of scientific re-
search in the underlying fields, particularly computer 
science, and industrial competitiveness. We will use 
original evidence, admittedly of preliminary type, to 
support this proposition. 

In the second section we will review some of the 
most important technological innovations in the IT 
industry and relate them to their intellectual origin. 
This sets the stage for the third section, in which we 
propose a theoretical framework to articulate the re-
lation between the dynamics of scientific knowledge 
(or search regime) and the industrial competitive-
ness. In the fourth section we review descriptive ev-
idence drawn from a large sample of CVs of the top 
1,010 scientists in computer science worldwide.  
Finally, we illustrate some policy implications of 
these findings and draw conclusions. 

Technological competitiveness and  
long-term scientific performance:  

a neglected link? 

On the origin of ideas in the IT industry 

By any standard, the IT industry has witnessed an 
impressive record of technological progress after 
World War II (WWII). As Gordon Moore once noted:  

…if the transport industry had the same rate of 
progress, it would now be possible to fly from 
New York to Paris in a few minutes.  

The IT industry is now a huge collection of special-
ised and interdependent industries, each of which 
has its own established markets, end users, perfor-
mance criteria, and learning curves. 

What is the relationship between technological 
progress in this industry and scientific progress in 
underlying fields? This is not an obvious question, 
particularly after careful economic theorizing and 
many historical and empirical reconstructions have 
demolished the myth of a linear transition between 
scientific discovery and technological development. 

Let us start with a preliminary investigation, 
based on expert opinion. A few years ago we asked a 
small panel of scientific authorities in computer sci-
ence, in both European and US universities, to list 
the most important technological innovations in the 
industry after WWII and to identify the origins of 
the idea. Their opinions are valid still today. 

Table 1 shows the list of top 10 innovations. Quite 
surprisingly, although eventually developed by 
companies and introduced to the market, all of them 
can be traced back to genuine new ideas originally 
conceived in the academic world. Although there 
may be a bias in this reconstruction, due to the pro-
fessional background of our respondents, what is 
mentioned is not a pure academic outcome but tech-
nological breakthroughs, eventually transformed into 
huge worldwide market opportunities.  

There is another useful piece of information in 
Table 1. With the (partial) exceptions of the early 
pioneering ideas of John von Neumann and of the 
invention of the internet at CERN, all the major 
breakthroughs originated from academic research 
carried out by US scientists and/or in US universi-
ties. Put it into a historical perspective, while the 
seminal theoretical contributions to the entire field 
of computer science were conceived by European 
thinkers (Alan Turing and John von Neumann) the 
evolution of the field in the half-century after WWII 
has been dominated by US scientists. 

This evidence suggests that the linkage between 
technology and intellectual creativity might be much 
deeper and subtler than is possible to detect with 
classical economic indicators, such as citations in 
patents, or R&D expenditure. We must develop new 
approaches to carefully trace the flow of ideas from 

 
The origins of competitiveness in a 
high-tech industry lie within the 
excellence of the underlying scientific 
base. This does not translate linearly 
into new products and services. 
Rather, it nurtures the ecology of ideas 
and visions that feed innovation 

Table 1. Origins of most important ideas in computer science 
and technology 

Top ten ideas in computer science 

1.  Turing machine (Goldstine and von Neumann; Turing) 
2.  Programming languages; formal description of syntax and 

semantics; LISP (McCarthy) 
3.  Memory hierarchy; cache memory 
4.  User interface; graphic user interface (GUI); concept of 

window (Xerox Palo Alto Research Center; Apple) 
5.  Internet (UCLA/DARPA); packet switched multinetworks; http 

and html protocols; WWW (Berners-Lee) 
6.  Computational complexity; computational intractability; 

pseudocausality 
7.  Relational database 
8.  Fourier fast transform (FFT) (Cooley and Tuckey) 
9.  Efficient algorithms; data structure (Knuth and Tarjan) 
10. Artificial intelligence 

Source: our elaboration from expert opinion 
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the mountains of pure theory down to the sea of 
market competitiveness. We know that the path is 
not linear, but then we ignore how to trace commer-
cial success back to the pioneering ideas. The incu-
bation cycle of truly innovative ideas may be very 
long.  

Luckily, computer science and the computer in-
dustry have been the object of a massive historical 
literature, that has highlighted several key factors. 
We draw from this literature to answer the following 
research question: To what extent do the technologi-
cal performance and the industrial competitiveness 
of the IT industry depend on the quality of the un-
derlying science? The answer to this question is pre-
liminary to another one: To what extent can the poor 
performance of the European IT industry be traced 
back to the poor performance of its scientific base? 

Historical reconstructions are absolutely clear 
about the dominant role of private companies, the 
importance of demand from the military and the ci-
vilian business, and the importance of scale and 
scope, or the complementarity between technology, 
manufacturing and marketing investment by large 
companies such as IBM (Flamm, 1988; Chandler, 
1990; Langlois, 1992; Mowery, 1996; Langlois and 
Steinmuller, 1999). Historical records of inventions 
in computer technology show a disproportionate 
share of contributions from companies (see Dummer 
(1997) for a broader reconstruction covering all 
fields of electronic inventions and discoveries). At 
the same time, they open several windows onto the 
underlying dynamics of knowledge generated in  
academia. As succinctly stated by Mowery and  
Rosenberg (1998: 140):  

University research played a key role in the 
growth of the US computer industry. Universi-
ties were important sites for applied, as well as 
basic, research in hardware and software and 
contributed to the development of new hard-
ware. (…) By virtue of their relatively ‘open’ 
research and operating environment that em-
phasized publication, relatively high levels of 
turnover among research staff, and the produc-
tion of graduates who sought employment 
elsewhere, universities served as sites for the 
dissemination and diffusion of innovation 
throughout the industry.  

We briefly review some of the turning points in the 
history of computing in which this contribution is 
more evident. Evidence on the USA is offered first, 
followed by evidence on the role of the European 
public research sector. 

Historical evidence on the role of the  
scientific base: USA 

The era of digital computing in the USA was inau-
gurated by the ENIAC electronic calculator (Ceruzzi, 
1998; Norberg, 2005), which was designed and built 

at Moore School of Electrical Engineering, Universi-
ty of Pennsylvania by Eckert and Mauchly, during 
WWII, to meet a requirement for calculating firing 
tables for the US Army. After this development, in 
1945 the great mathematician John von Neumann 
described the abstract structure of a modern compu-
ting machine, which eventually became universally 
acclaimed as the von Neumann architecture. Before 
that, IBM had developed the automatic sequence-
controlled calculator (ASCC), known as Mark I, 
which was still an electromechanical machine. It 
came out in 1944, resulting from on a joint effort be-
tween IBM and the University of Harvard, which 
was established in 1939 (Moreau, 1984). 

Interestingly, as early as in 1946 the Moore 
School of the University of Pennsylvania and the US 
Army sponsored a course on the theory and tech-
niques for the design of electronic digital computers. 
However, the role of the university was not unam-
biguous: in the same year one administrator of the 
Moore School: 

…asked that members of the staff sign a release 
form that would prevent them from receiving 
patent royalties on their inventions. He brooked 
no discussion. Eckert and Mauchly refused  
to sign. They resigned on March 31, 1946.  
(Ceruzzi, 1998: 25) 

Eckert and Mauchly soon established a company that 
developed the UNIVAC, the first large-scale comput-
er, which was sold to the military, the Census Bureau, 
and to private companies for administrative uses. In 

the 1950s several companies entered the industry. 
IBM hired von Neumann as a consultant in January 

1952 and started a collaboration with his organiza-
tion, the Institute for Advanced Study at Princeton 

(Pugh, 1995). Another company, Engineering  

Research Associates, starting from code-breaking ac-
tivities during WWII, hired engineers from the Uni-
versity of Minnesota, among whom was Seymour R 

Cray, who eventually became a leader in supercom-
puting. Another small company, Bendix, built the G-
15 computer, based on Harry Huskey’s 1953 design at 
Wayne State University, Detroit, MI. Thus in the ear-
ly days of the computer industry we witness many 

universities building their own machines, based on 

von Neumann or Turing architectures. 
The role of universities greatly increased after a 

commercial move by IBM. In 1954 IBM delivered 
the 650, a machine that was installed mainly for 
business purposes in a thousand companies. Thomas 
Watson Jr decided that a university could benefit 
from a discount up to 60% on the price of the 650 if 
that university agreed to offer courses in business 
data processing or scientific computing (Watson, 
1990). This opened the way to a large diffusion of 
courses in computer science across US universities.  

Meanwhile, US universities started to be involved 
in research on the component technologies underly-
ing the computer. Soon after WWII, the University 
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of Illinois, Harvard and Massachusetts Institute of 
Technology (MIT) worked on magnetic core memo-
ries (Pugh, 1984; Wildes and Lindgren, 1985). Bas-
sett (2002) has shown that even in industrially 
sensitive fields such as metal-oxide semiconductor 
technology, large companies left their researchers 
relatively free to publish papers and to attend scien-
tific conferences, thus interacting with academic  
researchers. 

The role of academic research is also evident in 
the field of high-level programming languages, for 
both the USA and Europe. While the single most 
important language, FORTRAN, was invented by 
John Backus at IBM in 1954 (Pugh, 1995), the APT 
language for the control of machine tools was devel-
oped by the Servomechanisms Laboratory of MIT in 
1955, the ALGOL 60 was created by a committee 
convened by F L Bauer from the University of Mu-
nich (Germany) in 1958, and COBOL was promoted 
by a group of universities and computer users which 
held a meeting at the Computation Center of the 
University of Pennsylvania in 1959. In turn, the 
LISP language was developed by John McCarthy at 
MIT in 1958 (Moreau, 1984), PASCAL was devel-
oped by Niklaus Wirth at ETH in Zurich (Switzer-
land) in the period 1968–1969 (Wirth, 1996) and 
PROLOG was born in 1972 after the work of several 
French researchers mostly based at the University of 
Marseille (Colmerauer and Roussel, 1996). As with 
C++, it was developed in 1979 at Bell Laboratories 
by Bjarne Stroustrup, on the basis of the work he  
did for his PhD at Cambridge University (UK) 
(Stroustrup, 1996). 

Academic excellence was not necessarily an in-
gredient, however, particularly after the develop-
ment of the software industry. In December 1968 
IBM was forced by the US authorities to unbundle 
the commercialization of software from sales of 
hardware products, giving origin to a separate indus-
try, which then propagated in several application ar-
eas (Mowery, 1996). In many cases the development 
of software was the product of a large-scale entre-
preneurial effort, carried out by thousands of indi-
vidual programmers. As Campbell-Kelly (2003: 
209) puts it:  

In the late 1970s, a typical software development 
firm consisted of one or two programmers with 
strong technical skills but no manufacturing, 
marketing or distribution capabilities.  

This trend was reinforced after the emergence of the 
personal computer (PC) in the 1980s, but also in the 
huge growth of the videogame industry and of soft-
ware applications after the internet revolution. The 
creative skills of small firms were commercially ex-
ploited by larger firms, or the former were acquired, 
or disappeared. Universities did not play a direct sci-
entific role in this massive bottom-up effort, but 
were a crucial element for the mass culture that  
fostered entrepreneurial activities:  

In the software industry, most of the R&D is 
done by youthful programmers, usually not 
trained past the bachelor’s degree level, who 
crank out code in an intuitive but effective 
fashion. (Campbell-Kelly, 2003: 308) 

Programmers do not necessarily come from postgrad-
uate studies at universities, but benefit from an envi-
ronment in which new ideas are generated and 

debated on a continuous basis. Without such an aca-
demic background it would not be possible to explain 

the hacker movement, or the explosion of creativity 

over the concept of PCs illustrated by popular books 

such as Levy (1984) or Freiberger and Swaine (1984). 
A similar line of interpretation has been proposed 

in an effort to explain the impressive success of Sili-
con Valley. According to an influential historical lit-
erature, it was the top quality research carried out at 
Stanford University that gave origin to the birth of 
the electronics industry (Leslie, 1992; Leslie and 
Kargon, 1996). In particular, Frederick Terman, 
dean of the School of Engineering and then provost 
at Stanford, promoted large military patronage in 
electronics and then supported graduate engineers in 
the creation of new corporations (for a critical view, 
see Lowen, 1997). Other studies have confirmed, but 
also mitigated, this explanation. Kargon et al. (1992) 
consider a broader complex of academia, industry 
and government actors. Lécuyer (2006) has shown 
how Stanford students benefitted from updates in 
technology provided by companies located in the  
area, creating two-way technology flows. 

The role of military procurement for the growth of 
computer technology cannot be understood only on 
the basis of a demand–pull mechanism. Much more 
than that has been occurring. The design of research 
activities for the military has historically nurtured a 
complex interaction between academic research and 
procurement needs. Norberg and O’Neill (1996) 
have studied the creation and activities of the Infor-
mation Processing Techniques Office (IPTO) at the 
Defense Advanced Research Projects Agency in the 
period 1962–1986. They note that: 

IPTO’s early program emerged from the goals 
and desires of (…) university researchers eager 
to investigate new computing techniques.  

Throughout its entire life, IPTO followed the rules 
prescribed by its early director, Joseph C R Licklider, 
that the first criterion to be used for selection of  
projects was that: 

…the research must be excellent research as 
evaluated from a scientific or technical point of 
view. (Norberg and O’Neill, 1996: 29) 

As another source describes the arrangement: 

Licklider developed an effective way of admin-
istering the IPTO program, which was to place 
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his trust in a small number of academic centers 
of excellence that shared his vision- including 
MIT, Stanford, Carnegie Mellon, and Utah- and 
give them the freedom to pursue long-term re-
search goals with a minimum of interference. 
(Campbell-Kelly and Aspray, 2004: 191) 

Thus the crucial point is that military procurement of 
research reinforced criteria of scientific excellence, 
which were not to be sacrificed for purposes of 
short-term utility. 

Universities changed their role in the early histo-
ry: in the heroic period until 1959 they were directly 
involved in full-scale design and prototype produc-
tion of computers, while after the emergence of a 
dedicated computer industry they were rather com-
mitted to fundamental research, education, scientific 
advice and consultancy. 

Historical evidence on the role of the  
scientific base: Europe 

During WWII all large European countries had a 
promising start with the computer industry and built 
up foundations that could evolve into industrial 
competitiveness. Indeed, the origins of the computer 
technology are to be found in 20th century European 
science, particularly in the work of two intellectual 
giants: Alan Turing and John von Neumann. The 
reasons why an intellectual advantage did not turn 
into industrial competitiveness are worth exploring 
in detail. In the case of Europe, the role of universi-
ties must be considered jointly with large public re-
search organizations (PROs), such as Max Planck in 
Germany, or CNRS, INRIA and CNET in France. 
We focus on three large European countries: the UK, 
France, and Germany. 

In 1937 the English mathematician Alan Turing 
published the first theoretical model of a modern 
computer, the universal Turing machine (Davis, 
2000). He had visited Princeton in 1936, where he 
met the great logician Alonzo Church and von  
Neumann, who in 1938 offered him a position.  
Turing declined and went back to Cambridge, and 
during WWII played a great role in the production of 
a digital computer, known as COLUSSUS, which 
was developed as early as in 1943 for military use 
(Randell, 1980; Lavington, 1980a) and kept secret 
for many years (Copeland et al., 2006). One of the 
main reasons why the UK did not capitalize on its 
early achievements in digital computers was that 
these machines were considered military secrets and 
were dismantled after WWII. In 1945 Turing joined 
the new Mathematics Division of the National Phys-
ical Laboratory, where he contributed to the devel-
opment of the automatic computing engine (ACE), 
which was realized in 1950 and was the basis of a 
commercial version which was sold in the period 
1955–1964 (Moreau, 1984). Two university groups 
were active in that period in the UK, one at Man-
chester and another at Cambridge. As early as 1948 

a prototype of the first completely electronic stored-
program computer, conformed to the von Neumann 
architecture, was completed and labelled the Man-
chester automatic digital machine (MADM) (Lav-
ington, 1980a; 1980b). It went into operation in 
1949. In the same year the electronic delay storage 
automatic computer (EDSAC) was realized at  
Cambridge. Here Maurice Wilkes developed ideas 
that prepared for high-level programming languages, 
such as symbolic labels, macros, and subroutine  
libraries (Books LLC, 2010a). Thus in the early 
years of the computer era the UK was head-to-head 
with the USA. Ironically, as Moreau notes: 

…it was the Europeans rather the Americans 
who were the first in the world to make a com-
puter as a commercial product. (Moreau, 1984: 
53) 

It was the Ferranti MARK I, built in collaboration 
with the Manchester University Group and delivered 
in 1951. A commercial computer, known as LEO, 
was installed at a company in 1951, well before 
ENIAC (Campbell-Kelly, 1989; Ceruzzi, 1998).  

In France the theoretical roots of computer sci-
ence were laid down as early as the 1930s. The 
French mathematician Louis Couffignal demonstrat-
ed how a programmable binary calculator could be 
constructed using electromechanical technology as 
early as 1938, but his contribution was not well un-
derstood by the scientific environment (Moreau, 
1984). The first machines were realized in the 
1950s. The Bull Company’s prototype of Gamma 2 
was shown at the international exhibition in Paris in 
1951, while the Calculateur Universal Binaire de 
l’Armament (CUBA) was delivered to the military 
by the Societé d’Electronique et d’Automatisme in 
1952. Bull’s Gamma 3, developed in 1952, was also 
a commercial success, with more than 1,000 units 
sold (Leclerc, 1990; Moreau, 1984). In 1945 SEA 
introduced the CAB 2000 series, one of the first to 
use ferrite-core memories. According to Mounier-
Kuhn, 1994: 214): 

…in 1960 Compagnie des Machines Bull was 
one of the world’s leading manufacturers of  
data processing machinery. It had a base of 

 
One of the main reasons why the UK 
did not capitalize on its early 
achievements in digital computers was 
that these machines were considered 
military secrets and were dismantled 
after WWII 
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over 4,000 installations, of which a third were 
exported; 14,000 employees in France, ten fac-
tories, and a global turnover of 201 million 
French Francs, which had multiplied by 10 
over the past 10 years. 

Bull with the Gamma 60 was one of the competitors 
for the tender issued by the US Atomic Energy 
Commission (AEC) for a machine 100 times faster 
than any then existing, alongside UNIVAC and 
IBM. Unfortunately, although highly innovative, the 
machine had several problems that would have re-
quired substantive development, and failed to gain 
market share. These companies used to establish 
strong linkages with universities, particularly in  
Paris and Grenoble, and PROs. 

The link between academic research and indus-
trial production is also evident in the case of Ger-
many and other German-speaking countries such as 
Switzerland and Austria. Here the construction of 
computers started with the pioneering work of  
Konrad Zuse well before WWII. Zuse started his 
efforts in 1936, developed the Z1 binary calculator 
in 1938, the Z2 mechanical calculator in 1939 and 
the Z3 relay calculator in 1941 (Zuse, 1980; Swedin 
and Ferro, 2005; Rojas, 2006). After WWII he es-
tablished the Zuse KG company. In addition, the 
scientific foundations for the modern notion of 
software were established by academic groups in 
the 1940s and early 1950s. These included: the 
Plankalkül of Zuse in 1945, the work of Rutishauer 
and Bohm in Zurich in 1951, and the work of  
Semelson and Bauer in Munich in the 1950s  
(Bauer, 2002). Semelson studied the structure of 
programming languages and developed the notion 
of bracketed structures, a fundamental breakthrough 
in computer science, while Bauer was the first to 
propose the stack method of expression evaluation. 
Jointly, they developed fundamental works on com-
pilers (Books LLC, 2010b). 

Indeed, Zuse’s work is considered by historians of 
computing technology to be the earliest pioneering 
work in the modern era. In his reconstructions of 
major early computing events Williams places  
European pioneers such as Zuse, Turing at NPL, 
Williams and Kilburn at Manchester and Wilkes  
at Cambridge alongside von Neumann, Eckert  
and Mauchly, the Moore School, Harvard Universi-
ty, IBM and the Bell Laboratories in the USA  
(Williams, 2000). In the early history of computing 
technology Europe and the USA were equally  
competitive. 

These short summaries also make it clear that 
the early era of computer technology saw the deep 
involvement of the academic environment. Initially, 
universities were directly involved in the produc-
tion of prototypes. With the advent of the 1960s, 
the heroic period of prototype building was over 
and large computer manufacturers emerged. How-
ever, a sharp difference seems to emerge between 
the evolution of the technology in the USA and  

Europe. In the USA, this structural change did not 
bring a diminishing role for universities, but a re-
design or their role around fundamental research, 
education, scientific advice and consultancy. In  
Europe, the academic environment was leading 
head-to-head with the US one until the 1960s, but 
it seemed to lose ground in the subsequent decades. 
Not many scientific stars from Europe are men-
tioned in the studies of history of computing after 
the 1970s. This is an interesting puzzle. It is clear 
that the institutionalization of computer science as 
an academic discipline took place earlier in the 
USA, approximately in the 1950s, than in Europe, 
where it started in the late 1960s and diffused in 
the 1970s. But this is in itself part of the question: 
Why was the European academic system, which 
had generated pioneering achievements since the 
1930s, so slow to accommodate the new discipline 
institutionally? We suggest that a deep exploration 
of this puzzle might shed light on the overall issue 
of the long-term competitiveness of the European 
IT industry. 

In search of an explanation: characterizing 
the search regime of computer science 

In a stream of recent papers (Bonaccorsi, 2007; 
2008; 2010; Bonaccorsi and Vargas, 2010) we have 
argued that robust policy implications must be based 
on the comparative analysis of search regimes, or the 
characteristics of the dynamics of production of sci-
entific knowledge. Scientific fields differ in the chal-
lenges they pose to institutions of science at national 
level, so that their long-run performance depends on 
how national scientific systems adapt to them 
(Bonaccorsi, 2011). It is therefore useful to try to 
characterize the history of computer science from 
the point of view of the underlying abstract dynam-
ics of knowledge. 

The National Research Council (NRC) of the US 
National Academies has edited a number of essays 
from leading scientists on the state of the art of 
computer science, with a collective introduction 
(NRC, 2004). The opening description sets the stage 
for our discussion:  

Computer science embraces questions ranging 
from the properties of electronic devices to the 
character of human understanding, from indi-
vidual designer components to globally distrib-
uted systems, and from the purely theoretical to 
the highly pragmatic. Its research methods are 
correspondingly inclusive, spanning theory, 
analysis, experimentation, construction, and 
modelling. Computer science encompasses 
basic research that seeks fundamental under-
standing of computational phenomena, as well 
as applied research. The two are often coupled; 
grappling with practical problems inspires  
fundamental insights. (NRC, 2004: 11) 
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This description is interesting for several reasons. To 
start with, it is not based on the classical dichotomy 
between pure and applied science. Differently from 
physics, where theoretical physics is often detached 
from experimental physics, in computer science 
there is a significant overlap. Great theorists also en-
gage in developing (or have their students develop) 
software code in order to test their results. This is fa-
cilitated by the fact that the test of theories can be 
done in a relatively cheap way, by writing and run-
ning programs, instead of doing experiments in  
laboratories. 

Second, application is not just application, but is 
the source of inspiration for ‘fundamental insights’. 
This means that those that bring new problems to the 
scientific community are not considered to be the fi-
nal point of the application chain, but are themselves 
part of the discovery process. This has important in-
stitutional consequences, insofar as the scientific 
community not only includes academicians, but also 
company scientists, engineers, technicians and man-
agers. The professional boundaries between academ-
ia and industry are blurred. Mobility between the 
two worlds is mandated by the content and practice 
of research. 

There is a deep epistemic reason for why funda-
mental research has been so important for the devel-
opment of IT. As the introduction states succinctly, 
computer science research (NRC, 2004: 15): 

…involves symbols and their manipulation and 
the creation and manipulation of abstractions. 

…creates and studies algorithms and artificial 
constructs, notably unlimited by physical laws. 

…exploits and addresses exponential growth. 

…seeks the fundamental limits on what can be 
computed. 

…focuses on the complex, analytic, rational ac-
tion that is associated with human intelligence. 

This explains why fundamentally new ideas on tech-
nology are often the product of academic environ-
ments, populated with visionary professors, hard-
working PhD students, brilliant undergraduate stu-
dents, rather than of corporate laboratories. The role 

of abstraction is crucial here. In technical terms, ab-
straction means that there are sets of definitions that 
make it possible to manipulate the same object (e.g. 
procedures, or data) at many levels, preserving its 

fundamental properties. This makes it possible to 

move increasingly far from the physical implementa-
tion on a hardware without losing the relevant aspects 

of the description. For example, it is possible to de-
couple the program from the underlying hardware 

representation (Shaw, 2004). This is sharply different 
from what happens in most areas of engineering (as 

well as in the human brain). It would not be possible 

to ignore the detailed physical and geometric condi-
tions of, say, materials, in the design of a mechanical 
structure: here the study of mechanical properties, 
stability, elasticity or dynamics requires different 
tools and methods, but none of them can be done by 

abstracting from the specific features of the designed 

body and without physical testing. As a prominent 
theoretical computer scientist summarized:  

The computer originated in the academic envi-
ronment. Zuse and IBM are special cases. From 
the Moore School and the University of Iowa, 
from Aiken and Wilkes to Algol, the vast  
majority of the essential steps were achieved on 
academic grounds. Neither the car nor the air-
craft have come up this way. And there are 
very good reasons. One certainly is that the 
computer has an essential abstract side, most 
visible in programming, and abstract automati-
zation is at least not a usual industrial subject. 
(Zemanek, 1997: 16) 

To illustrate the power of abstraction, the introductory 

essay in the NRC’s volume notes that: 

…the Internet works today because of abstrac-
tions that were products of the human imagina-
tion. Computer scientists imagined ‘packets’ of 
information flowing through pipes, and they 
(symbolically) worked out the consequences of 
that idea to determine the new laws those flows 
of information must obey. This conceptualiza-
tion led to the development of protocols that 
govern how data flows through the Internet, 
what happens when packets get lost, and so on. 
(NRC, 2004: 18; see Peterson and Clark, 2004)  

The discussion above can be summarized using the 
notion of a search regime (Bonaccorsi, 2008). Ac-
cording to this notion, the dynamics of production of 
knowledge in scientific fields can be characterized 
along three dimensions: the rate of growth, the dy-
namics in knowledge diversity, and the nature of 
complementarity. On the basis of an extensive his-
torical reconstruction and of informed reports from 
scientists, we can conclude that the search regime of 
computer science has been characterized by turbulent 

 
We conclude that the search regime of 
computer science has been 
characterized by a turbulent rate of 
growth, proliferation dynamics, and 
strong cognitive and institutional 
complementarity 
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rate of growth, proliferation dynamics, and strong 
cognitive and institutional complementarity. 

The large rate of growth and the divergent dynam-
ics (proliferation) derive from the intrinsic epistemic 

dynamics. On one hand, after the emergence of mi-
croelectronics Moore’s law (which is not a law of  

nature, but a law of business), granted order of magni-
tude increases in computing power over time,  
relaxing year after year the constraints on computa-
tion. At the same time, the symbolic representational 
nature of computer programs made it possible to ex-
plore hundreds of different directions at relatively low 

cost. Programming languages added further diversity 

to the search regime, by allowing computing results to 

be obtained in many different programming ways. 
The abstract nature of computer objects (e.g. data, 
procedures) allowed a process of progressive trans-
formation of many fields of reality, previously repre-
sented in analogical ways, in the form of bits. This has 

triggered a proliferation dynamics, whereby, at any 

point in time, there have been several diverse research 

trajectories, sometimes also in competition, rather 
than convergence on a few research programmes 
(Bonaccorsi and Vargas, 2010). 

The nature of complementarity also comes from 
the epistemic dynamics. The progressive digitaliza-
tion of regions of reality (not only data but images, 
sound, movement, all sorts of physical parameters 
etc.) has attracted a large number of other disciplines 
into computer science, creating powerful forms of 
cognitive complementarity. Not only mathematics, 
logics, and electric and electronic engineering have 
been involved into computer science since the be-
ginning, but also biology and chemistry (bioinfor-
matics), earth sciences (geographic information 
systems), psychology (artificial intelligence), visual 
art (computer graphics), operations management 
(enterprise resource planning), and many other cog-
nitive fields. All have been deeply transformed from 
the relationship with computer science. In all cases, 
there was not just ‘application’, but, as noted above, 
‘fundamental insights’ to be gained from this  
complementarity. 

Another form of complementarity is defined insti-
tutionally, i.e. the systematic interaction between 
scientific and non-scientific institutions, such as in-
dustry, hospitals, government. In computer science, 
this complementarity comes from the constitutive in-
terplay between theoretical work and pragmatic 
goals (Bonaccorsi, 2010). 

A crucial point is that this process is dynamic and 
self-reinforcing. Building up an attractive scientific 
environment requires obsessive attention to quality 
criteria in recruitment and promotion of academic 
staff, as well as ambitious goals in the selection of 
students. The two reputational processes reinforce 
each other and make it credible to raise government 
or private money for research. 

Summing up, we see considerable evidence of in-
tense exchanges of ideas and knowledge flows be-
tween industry, academia and government. Although 

it cannot be said that university research has been 
the source of most inventions, it has played a promi-
nent role in creating new concepts and ideas, in 
maintaining a challenging intellectual climate, and in 
supporting the entrepreneurial attitude of students 
and graduate researchers. Also, deep and radically 
new ideas often originated in academic environ-
ments, were incubated for some years, and eventual-
ly found their way into innovations in the market. 

We are then faced with our two research ques-
tions. First, is there a systematic relationship be-
tween quality of academic research and industrial 
competitiveness in IT? If the answer is yes, then 
there is a second question: Is there a structural dif-
ference between Europe and the USA in this re-
spect? In order to address these questions we now 
present fresh empirical evidence and then build up 
an explanation. 

New evidence on scientific excellence in 
computer science 

An analysis of the CVs of top computer scientists 

An interesting perspective is to look at the large 
community of computer scientists and at their own 
self-validation processes. Citations to papers in 
computer science are automatically recorded by 
Citeseer,2 a highly structured indexing system estab-
lished in 1997 and endorsed by most scientific socie-
ties and departments in computer science worldwide. 
The Citeseer service ranks scientists by the total 
number of citations, without checking for homo-
nyms and controlling for the age of scientists. There-
fore it may be considered a crude approximation for 
more sophisticated bibliometric exercises. However, 
over large numbers the probability and size of errors 
are considered acceptable. 

We downloaded from the internet all CVs of all 
top 1,000 scientists in the Citeseer service, as of end 
2005 (more precisely, n = 1,010). These scientists 
have the largest cumulative number of citations in 
papers from a list of journals and conferences in 
computer science, irrespective of their age. Their av-
erage age is 56 years, with a minimum of 30 years. 
CV downloading and data processing was done 
manually by a team of research assistants. 

Information from CVs is well known to be highly 
informative and rich, but is usually not valid and is 
statistically difficult to treat. Self-declaration cannot 
be checked with any accuracy. The updating of in-
formation is totally arbitrary. The format is free and 
practical experience shows many instances of arbi-
trariness and bizarre attitudes. Thus there is often no 
way to fill in missing information from any other 
source. In a few cases we had to address the scien-
tists by mail, in order to check for missing infor-
mation, but not always with success. 

We therefore decided to focus mainly on hard in-
formation, in which the incentive to misrepresent  
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reality may be low. Several items of data are still 
missing, so the analysis must be done on different 
samples, variable by variable. A number of interest-
ing insights can be derived from this type of infor-
mation. Looking at the top scientists at the top their 
career and recognition is a useful way to reconstruct 
the history of scientific achievements in the last half-
century. What follows is a purely descriptive treat-
ment of data, with limited comment. 

Patterns of educational mobility 

We identified the location of the universities at 
which top scientists received their academic degrees. 
Such information can be retrieved with certainty  
for 855 scientists in the case of PhD, 457 for the 
Master degree and 641 for the Bachelor degree (see 
Table 2). 

In terms of information availability, it is likely 
that not all scientists received a Master degree, 
which is not formally necessary to receive the PhD 
in several academic systems. In turn, the difference 
between the total number of observations for PhD 
and the size of the sample (855 vs 1010) may be due 
to people without a PhD degree or to people not 
mentioning the place of their degree. It is impossible 
to disentangle the two effects. Furthermore, it is pos-
sible that some scientists do not mention the place of 
their first degree, which is a necessary preliminary to 
receiving a PhD. 

The geographic distribution of PhDs is extremely 
concentrated: US universities gave the degree to  
future top scientists in 76.5% of observable cases, 
against 16.6% in the case of Europe. This gives an 
extremely accurate view of the type of tough compe-
tition in this community: it is almost impossible to 
rank high in the computer science field without a 
PhD from either the USA or Europe, with the USA 
dominating by a large margin. A similar level of 
concentration can be observed in the case of Master 
degrees. These degrees require a great deal of inter-
national mobility and tend to be considered a first 
step towards the PhD for talented students. Very in-
terestingly, the geographical distribution is much 
less concentrated in the case of Bachelors. Here a 
good 15% of students come from Asia and 10.9% 
from other countries. It seems that the US academic 
system has been historically able to attract talented 

graduate students from all over the world, offering 
Master and PhD degrees as intermediate steps  
towards a scientific career. 

In evolutionary terms, it seems that the US aca-
demic system has superior properties of variety gen-
eration, in the sense that is able to identify, select, 
and motivate a continuous flow of intellectual talent, 
irrespective of the culture of origin, to be channelled 
into a powerful system of selection and retention. 

Additional insights can be obtained by examining 
the time evolution of PhD degrees. We obtained in-
formation on the year of receiving their PhD for 719 
scientists. Note that the place of PhD degree is in-
stead recorded in 855 CVs (see below). We decided 
not to compute the date in a conventional way, for 
example by adding a fixed number of years to the 
birth date, or similar interpolation techniques. 

For this sub-sample of 719 scientists, we observe 
(see Table 3) an extremely skewed distribution of 
the place of degrees, with the USA representing 77% 
of the total and Europe 16%, five times less. In 
terms of cohorts, it is interesting to observe that by 
end of the 1960s the US universities had already 
granted 89 PhD degrees to those that eventually be-
came top scientists. After that, there is a progression 
in the number of degrees in US universities, while 
the same is not true for European universities. This 
finding sheds light on the puzzle identified in the 
section of this paper on ‘Technological competitive-
ness and long-term scientific performance: a  
neglected link?’: while Europe was at the leading 
edge in the 1950s, it gradually lost ground. The con-
sequences of this weakness rapidly became visible. 
In the period 1980–1989, a period of explosion of 
computer science and information technology, US 

Table 2. Distribution of degrees of top computer scientists by geographical area 

Area PhD degree Master degree Bachelor degree 

Number % Number % Number % 

USA 654 76.5 332 72.6 363 56.6 
Europe 142 16.6 58 12.7 112 17.5 
Asia 9 1.1 30 6.6 96 15.0 
Other 50 5.8 37 8.1 70 10.9 

Total 855 100.0 457 100.0 641 100.0 

 
It is almost impossible to rank high in 
the computer science field without a 
PhD from either the USA or Europe, 
with the USA leading by a large 
margin 
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universities were able to attract 207 high potential 
candidates (+55% with respect to the previous  
decade), against only 37 at European institutions 
(−23%). Something must have happened in that pe-
riod, probably a manifestation of the accumulation 
of weaknesses. 

It is highly informative to examine the identity of 
those universities that granted undergraduate and 
postgraduate degrees to those brilliant scientists in 
their early days. Again, we focus on the upper tail of 
the distribution of universities, because we are more 
interested in understanding the dynamics at the ex-
treme, rather than the average properties. This is 
more informative about the real conditions of mobil-
ity and capacity building in a highly turbulent scien-
tific field. 

Therefore we select the top 15 universities in 
which the top scientists have received their degree, 
at each of the three levels of education, i.e. PhD, 
Master, and Bachelor (see Table 4), in descending 
order for the PhD. 

The top 15 universities represent 56.2% of all 
universities granting a PhD to the 855 top scientists 
for which we are able to reconstruct the information. 
In turn, the top 15 universities represent 47.1% of 
those granting the Master degree (n = 457) and 
41.3% of those granting the Bachelor (n = 641). The 
differences in the coverage rate shows that postgrad-
uate education is more concentrated than undergrad-
uate. Nevertheless, the top 15 universities cover 
between 40% and almost 60% of the sample, a rea-
sonable proportion for our analysis. 

We start from PhD education. A few comments 
are in order. First, the top ranking covers mostly US 
universities, with two Europeans featuring in the 
10th position (Cambridge, UK) and 14th position 
(Edinburgh, UK) and a Canadian one in the 13th po-
sition (Toronto). Second, the distribution is highly 
concentrated. As stated, the first 15 universities at-
tract 56.2% of all scientists for whom we have full 
information. But this is not enough: the first four 
(MIT, Stanford, Berkeley, Carnegie Mellon) attract 

Table 3. Distribution of year and place of PhD degree of top scientists in computer science

Year USA Europe Asia Other Not available Total 

< 1950 4 4 0 0 0 8 
1950–1959 19 3 0 0 0 22 
1960–1969 66 9 2 3 0 80 
1970–1979 134 48 1 10 0 193 
1980–1989 207 37 4 18 2 268 
1990–present 122 17 1 7 1 148 

Total 552 118 8 38 3 719 

Table 4. Ranking of top 15 universities granting PhD, Master and Bachelor degrees to top scientists in computer science 

 PhD degree Master degree Bachelor degree 

Number % Number % Number % 

MIT 82 9.6 47 10.3 45 7.0 
Stanford University 78 9.1 29 6.3 10 1.6 
University of California at Berkeley 69 8.1 27 5.9 20 3.1 
Carnegie Mellon University 43 5.0 13 2.8   
Harvard University 35 4.1 14 3.1 25 3.9 
Cornell University 27 3.2 12 2.6 11 1.7 
Princeton University 26 3.0   15 2.3 
University of Illinois 22 2.6 12 2.6   
University of Michigan 20 2.3 9 2.0 18 2.8 
University of Cambridge 16 1.9   18 2.8 
Yale University 15 1.8 7 1.5 14 2.2 
University of Wisconsin 14 1.6 10 2.2   
University of Toronto 13 1.5 7 1.5 9 1.4 
University of Edinburgh 13 1.5     
University of Pennsylvania 13 1.5     
University of Massachusetts   8 1.8   
University of Washington   7 1.5   
University of California at Los Angeles   7 1.5   
Indian Institute of Technology   7 1.5 34 5.3 
National Taiwan University     13 2.0 
California Institute of Technology     12 1.9 
Technion Israel Institute of Technology     11 1.7 
Brown University     10 1.6 

Total number of observations 855  457  641  

Note: universities not in USA are in italics 
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almost one-third of the total. Third, a mutual rein-
forcement mechanism is clearly in place. Brilliant 
students target top universities because there they 
have the opportunity to meet and to work with the 
best scientists. Top universities actively target tal-
ented students to confirm their reputation. Postgrad-
uate education seems to be a promising candidate to 
explain the success of the scientific careers of these 
scientists. Understanding the extraordinary success 
of the US PhD model in turbulent fields is therefore 
a key for policy learning. 

When examining the distribution of universities 
granting the Master degree the top list is slightly dif-
ferent. There are a few new entries from the USA 
(e.g. University of Massachusetts and University of 
California at Los Angeles), but the most interesting 
new entry is the Indian Institute of Technology, 
which is not a single institution but an umbrella  
organization for several universities.  

The situation changes quite drastically when we 
move to the Bachelor degree, the entry point for stu-
dents considering a career in computer science. In 
this list the Indian Institute of Technology ranks se-
cond, contributing with 34 undergraduate students to 
the flow of future star scientists. Interestingly, here 
we find many more universities outside the USA: 
from Europe (Cambridge), Taiwan (National Taiwan 
University), Israel (Technion Institute of Technology) 

and Canada (Toronto). 
Our interpretation is as follows. The talent pool 

for a career in computer science is worldwide. En-
try points are good universities offering strong 
basic scientific knowledge but also giving brilliant 
students sufficient motivation to emerge. After that 
stage, however, future top scientists must be chan-
nelled into foreign universities, most of which are 
in the USA. In preparing for this migration of  
talent, Asian countries have been more strategic, 
investing heavily into the preparation of undergrad-
uate students to be selected and sent to top US uni-
versities. European universities, in contrast, 
cultivate the ambition to organize graduate educa-
tion, particularly PhD education, in isolation. They 

actively practice endogamy, by selecting students 
from internal Master programmes, which in turn se-
lect bright students from the Bachelor. With few 
exceptions, European postgraduate education in 
computer science is not globally competitive. If it 
were competitive we would see more students mi-
grating from Asia and the rest of the world into 
Europe, instead of the USA, and we would see 
more students moving from the USA to Europe. In 
other words, Europe seems to play a game of lim-
ited mobility. 

Patterns of disciplinary mobility  

Where do top computer scientists come from, in 
terms of disciplinary affiliations? The data do not al-
low a full-scale analysis, because we do not have 
control samples of scientists in related fields. There-
fore the evidence should be interpreted in terms of 
overall mobility, rather than of specific discipline-to-
discipline pathways. More than half of them gradu-
ated either in mathematics or engineering, not com-
puter science (see Table 5). The entry point of a 
scientific career is not in the specialised field, but in 
some of the underlying knowledge bases, either the-
oretical or technical. Also interesting is the group of 
graduate students in physics who are recognized as 
key leaders in computer science. 

Not surprisingly, computer science is number one 
at the level of Master degrees, a stage in which some 
focusing is required. Still, it covers only 34.1% of 
observable cases (including missing observations). 
Finally, at the PhD stage the disciplinary affiliation 
of computer science dominates with 38.2% of cases. 
The large number of missing observations may con-
found the picture (e.g. do scientists omit this infor-
mation because it is considered obvious that their 
PhD is in computer science?). 

At the same time an interesting tentative interpre-
tation can be offered. Computer science is a relative-
ly young discipline. It has not the long scientific 
history of physics, mathematics, or chemistry.  
Furthermore, it has an intrinsically dual nature: a 

Table 5. Distribution of PhD, Master and Bachelor degrees by discipline

 PhD degree Master degree Bachelor degree 

 Number % Number % Number % 

Computer science 327 38.2 156 34.1 102 15.9 
Engineering 116 13.6 113 24.7 165 25.7 
Mathematics 90 10.5 75 16.4 165 25.7 
Physics 25 2.9 14 3.1 45 7.0 
Statistics 9 1.1 6 1.3 3 0.5 
Psychology 8 0.9 2 0.4 9 1.4 
Linguistics, literature 4 0.5 4 0.9   
Economics 2 0.2 6 1.3   
Biology     4 0.6 
Chemistry     4 0.6 
Other or not specified 274 32.0 81 17.7 144 22.5 

Total number of observations 855  457  641  
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theoretical discipline, based on advanced research in 
mathematics, logics, computation, probability, and is 
also an application-oriented discipline, with a face 
towards the industrial and commercial feasibility of 
research results. Our data seem to suggest that com-
puter science has been a gateway for cross-discipline 
mobility and cognitive recombination.  

As a matter of fact, a great deal of cognitive re-
combination seems to take place within this field. 
Students may start with a degree in fundamental dis-
ciplines (mathematics, physics) and find this new 
discipline as attractive as old fields for a brilliant  
career. Engineers do the same. Somewhat less repre-
sented, students with a background in human scienc-
es (literature, linguistics, psychology) and social 
sciences (economics) may combine their domain  
expertise with advanced computer science. 

This interpretation is confirmed by Table 6, which 
shows the transition matrix between the Bachelor 
degree and the PhD. The a priori expectation is that 
there must be consistency between the two, leading 
to a matrix strongly concentrated along the principal 
diagonal. This is roughly confirmed for computer 
science (79.4% on the diagonal cell) but not for 
mathematics and engineering.  

We therefore conclude that computer science is a 
field characterized by a high degree of disciplinary 
mobility, attracting competences from related fields. 
In terms of the search regime framework, this 
amounts to saying that cognitive complementarity is 
a key element of the epistemic dynamics. 

Again, the European higher education systems are 
less equipped to deal with this kind of cognitive 
complementarity. Disciplinary mobility in PhD edu-
cation, for example, is not encouraged. The European 

tradition of PhD education is one of subordination to 
established disciplinary boundaries, rather than of 
open competition on the basis of research proposals. 

Patterns of career mobility 

Top scientists are scarce and there is competition to 
attract them. Competition for scarce academic staff 
of top quality may be considered a layered game: 
only highly ranked institutions can compete for very 
top people, and very top people carefully select their 
appointments in order to increase their opportunities 
to learn, to have good colleagues and students, to 
strengthen their CV and to increase their reputation. 

Competition, however, is multidimensional. 
Among people of the same stratum of quality, sec-
ondary factors in selecting an affiliation (in addition 
to personal or family idiosyncratic considerations) 
include the offer to develop a small but promising 
research group, or reputation in a niche of the disci-
pline, or the availability of special research facilities, 
or the like. 

We computed the number of career changes in 
the total sample of scientists. These include any 
move from assistant professor to associate professor 
to full professor in different affiliations, or equiva-
lent levels in other academic systems, for academi-
cians, or appointments in different organizations for 
those working in industry and government. Promo-
tion within the same organization is not considered 
a career move, even if there is geographical mobili-
ty. Geographical mobility at the same level of  
career (a rare event) is not considered a career 
move either.  

We have 1,010 observations, for which we count-
ed 4,418 career moves, or 4.36 per person. We clas-
sified the 4,418 career positions into four classes: 
academic positions (n = 3,117 or 70.6%), industry 
positions (n = 786 or 17.8%), consultancy positions 
(n = 332 or 7.5%) and government positions  
(n = 183 or 4.1%). 

Among many aspects revealed by the analysis of 
career paths, we particularly note the ranking of aca-
demic institutions by the number of career moves 
that have involved them in the life of top scientists 
(see Table 7). All top 15 institutions are based in the 
USA, with the exception of Toronto, which is 

Table 6. Transition matrix between disciplinary distribution of Bachelor and PhD degrees

Bachelor degree PhD degree 

Mathematics Engineering Computer 
science 

Other disciplines No PhD Total 

Number % Number % Number % Number % Number % Number % 

Mathematics 47 8.5 14 49.7 82 11.5 19 11.5 3 1.8 165 100.0 
Engineering 4 41.8 69 34.5 57 17.6 29 17.6 6 3.6 165 100.0 
Computer science - 2.0 2 79.4 81 15.7 16 15.7 3 2.9 102 100.0 

Total 51 19.7 85 50.9 220 14.8 64 14.8 12 2.8 432 100.0 

 

 
The search regime of computer science 
has been characterized by a turbulent 
rate of growth, proliferation dynamics, 
and strong cognitive and institutional 
complementarity 
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ranked 15th. We find the data illuminating. It is not 
surprising that top universities try to attract top sci-
entists, what is impressive is the extreme concentra-
tion of this process. The first 15 universities account 
for 1051 moves, or 33.7% of the total number of  
academic moves in the entire careers of 1,010 top 
scientists.  

Even more impressive, the first four universities, 
namely MIT, Stanford, Berkeley and Carnegie 
Mellon, account for 544 moves, or 17.4% of the to-
tal. Assuming only one stop in one of these universi-
ties per scientist, we find that almost 54% of all 
scientists in the sample, coming from all countries in 
the world, have spent at least a period of their career 
at just these four universities. Alternatively, assum-
ing multiple career steps within these four universi-
ties (admittedly a more realistic scenario) slightly 
changes the situation: at the extreme, if all average 
4.36 moves would have been made in the four uni-
versities, we would still find a large group of 136 
scientists, spending all their career in only four insti-
tutions. Further examination, based on path analysis, 
can elucidate the pattern better. 

For the sake of our discussion, however, what is 
remarkable is the gravitational pull of highly prestig-
ious universities on the career decisions of top scien-
tists. We find this finding impressive and highly 
informative in terms of policy implications. 

Another interesting finding refers to academia–
industry mobility. While we are talking of scientists, 
whose visibility is measured through citations in 
publications, we still see quite remarkable mobility 
within industry positions and between industry and 
other positions, mainly academia, and vice versa, 
accounting for 17.8% of the total. Institutional  
systems that facilitate industry–academia mobility 
are clearly more attractive for top scientists in this 
field. Systems like those found in most European 
countries, where the career boundaries between aca-
demia and industry are very rigid, are definitely less 
attractive. 

Duration of career 

The analysis of CVs allows us to investigate the 
length of stay in each position. We limit the analysis 
to academic careers and investigate four career tran-
sitions: from postdoctoral researcher to assistant  
professor (or researcher in other academic systems, 
or equivalent), from assistant to associate, from as-
sociate to full professor, from full professor to an-
other affiliation in the same level. It should be noted 
that the number of observations greatly varies across 
transitions, a limitation that we cannot overcome 
given the information available. 

Let us first examine the postdoctoral transition 
(see Table 8). At this stage of their career junior sci-
entists are bright, promising researchers, but not yet 
academic stars. Still their average stay in that posi-
tion is only 1.8 years (n = 68). It seems that the aca-
demic system is extremely competent at spotting 
future scientific leaders. This is in sharp contrast to 
the well-known phenomenon of the increased aver-
age duration of postdoctoral positions in many  
academic fields, above all life sciences. 

Subsequent career moves also follow a fast track: 
these scientists become associate professors after 
five years, and full professors after another five 
years. On the average, they become full professors 
12 years after obtaining a PhD, a remarkably fast  
career indeed. If they finish their PhD at age 22 or 
23, they reach the summit in their early 30s. 

An easy way to comment these data is to remem-
ber that these are star scientists, who have usually 
produced outstanding contributions in their early 
years. This comment misses the point. First, precise-
ly because great scientists are extremely productive 
in their early years, the academic system might ob-
tain many results by postponing the promotions in 
the career. Second, we are observing average data. 
Standard deviation informs us that even faster  
careers are observable. Indeed, for some people 
promotion to a higher level may occur within a year 
of the initial promotion!  

The dynamics we observe are the result of intense 
competition among universities to attract the best 
young researchers, then the best young professors. 
Without strong competition among universities,  

Table 7  Ranking of top 15 affiliations (only academic 
positions) in total number of positions over career 

Institution Number 

MIT 174 
Stanford University 166 
University of California at Berkeley 102 
Carnegie Mellon University 102 
University of Illinois 59 
University of Maryland 58 
Cornell University 52 
University of Washington 45 
University of Pennsylvania 44 
Harvard University 44 
Princeton University 44 
University of Texas 44 
University of Massachusetts 42 
Brown University 41 
University of Toronto 34 

Note: universities not in USA are in italics 

 

Table 8  Descriptive statistics of duration of stay in academic 
career positions 

Duration of career steps 

 Number Min Max Mean Std dev

As postdoctoral 
researcher 

68 0 7 1.81 1.499

As assistant 
professor 

412 0 36 4.89 5.33 

As associate 
professor 

336 0 40 5.39 4.175

As full professor 348 0 44 11.51 9.05 
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career paths would be slower on average. It is be-
cause competitors are ready to offer good prospects 
that all universities, subject to their budget con-
straints and reputation layer, try to compete. On the 
other hand, top scientists have large opportunity 
costs: if they lose opportunities the value they lose is 
very large, so they will not accept offers that they 
consider below their opportunity cost. The higher 
the reputation, the larger the opportunity costs. 

In other words, we may think of this career pat-
tern as a dynamic equilibrium, in which all talented 
scientists are allocated to universities that make best 
use of their talent, and all universities allocate their 
budget in the best possible way. If top scientists re-
ceive better offers, they move. If universities in-
crease their reputation and have extra budget, they 
try to improve the quality of their potential candi-
dates. Rapid career opportunities are the outcome of 
this dynamic. 

Patterns of international mobility 

Finally, for a subsample of 786 scientists we have 
been able to track the countries in which they took 
permanent positions. On average, they moved in 
1.35 countries, a remarkable level of international 
mobility. Taking into account different employment 
positions, they changed 5.32 times. It was not possi-
ble to normalize these data by age or seniority, given 
several missing items of data. A crude approxima-
tion is offered in Table 9, suggesting that on average 
they may change country for each 30 years of age 
and each 15 years of professional seniority. 

It has been suggested that Europe and the USA 
differ structurally in the geographic mobility of in-
novators (Crescenzi et al., 2007), insofar as US in-
novators move more systematically towards cities 
where opportunities are larger, while Europeans try 
to develop innovations starting from their existing 
locations. Our data seem to suggest that in the com-
puter sciences the pattern of geographic mobility has 
been an ingredient of long-term success. 

Scientific productivity 

We offer a very rough descriptive analysis of the 
scientific production of top scientists. Admittedly 
there is room for further research here, which we did 
not pursue. In particular, the definition of scientific 
journals and conference proceedings that account for 
international publications is problematic, so that any 
external control on the data self-declared in the CVs 
would require a long and dedicated investigation. 

We therefore simply registered the number of 
self-declared publications, from all categories com-
bined, and carried out a crude comparison with ISI 
(now Thomson Reuters) sources, by building up a 
Web of Science count of publications at the end of 
2005. These cover only a subset of journals consid-
ered important in the computer science community, 
and do not include many top conferences, that are 
certainly crucial for scientific careers.  

With all these caveats, it appears that on average 
top scientists self-declare almost 90 publications. 
Taking into account the age distribution, so that 
many individuals in the top list are still in their 30s, 
is a remarkable figure.  

Other useful information can be obtained from 
Table 10. One-fifth of the top scientists also actively 
produce complete software and mention it in their 
CVs. In this case, on average four programs are 
mentioned. In addition, 137 scientists mention pa-
tents in their CV, with an average number of 6.57. 
Thus top scientists are also active producers of non-
publication research output. This confirms the notion 
that institutional complementarity is an integral part 
of the search regime in computer science. 

Discussion of findings and  
policy implications 

The hidden dimension of industrial competitiveness, 
or why Europe lags behind 

Prevailing explanations of the European competi-
tiveness gap in the IT industry, as already discussed, 
are based on the lack of government initiative, small 

Table 10. Selected indicators of research output  

 Number of 
observations

Min Max Mean Std dev

Publications
Number of 

publications 
mentioned in 
CV 

903 1 964 87.74 95.58 

Number of ISI 
international 
papers 

983 1 284 24.73 34.59 

Other research output
Software 204 1 56 4.14 6.081 
Patents 137 1 47 6.57 8.342 

 

Table 9. Indicators of international permanent mobility

 Number Min Max Mean Std dev

Age 173 30 86 56.97 11.585 
Number of different 

countries 
786 1 6 1.35 0.686 

Number of different 
employment 
positions after 
PhD 

786 1 49 5.32 4.376 

Number of different 
country mobility 
steps per year of 
age 

163 0.01 0.11 0.029 0.017 

Number of different 
country mobility 
steps per year of 
seniority 

604 0.02 2.00 0.078 0.111 
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market size, internal market fragmentation, and deep 
separation between the military sector and civilian 
research.  

We suggest a complementary line of explanation. 
For a large industry such as the computer industry, 
an overall ecology of abstract ideas, engineering  
capabilities, technical skills, and entrepreneurial vi-
sions, is needed. This ecology is nurtured by the in-
teraction between universities and companies, and 
between companies and large (public and private) 
customers. On the side of industry, what is crucial is 
the working of mechanisms that also permit large-
scale experimentation, massively bottom-up parallel 
efforts, together with powerful selection mecha-
nisms to foster the scaling up and growth of success-
ful ideas. Universities can contribute to this ecology 
in two main ways: by producing top class research 
and education, and by pushing entrepreneurial ef-
forts of researchers to the market. European coun-
tries largely failed in both these directions. Contrary 
to the widely held assumption that Europe is good in 
science but poor in technology transfer (the so-called 
European paradox) we suggest that it is the weak-
ness in the scientific base that is responsible, indi-
rectly and in the long run, but in a powerful way, for 
the poor industrial performance. 

Implications for higher education policy 

The interesting question is now whether this search 
regime has been compatible with the institutional 
features of European higher education in the relevant 
historical period, and why. The answer is negative. 
A search regime characterized by a turbulent rate of 
growth, proliferation, and strong cognitive and insti-
tutional complementarity requires an institutional 
system that favours career mobility, competition 
based on peer review, a competitive PhD education 
system, cross-disciplinary mobility and industry–
academia mobility (Bonaccorsi, 2011). According to 
our data, top scientists move from the university that 
awarded their Bachelor degree to the USA, fight to 
enter top class universities as students, change affili-
ations several times in their career, combine differ-
ent disciplines around computer science, enjoy a 
rapid career, have extensive industry involvement, 
as witnessed by research collaborations, as well as 
software development and patents.  

Computer science has been based on a fierce 
competition for students and researchers worldwide. 
Knowing how severe these demands are, top class 
universities fight to attract the best students and try 
to offer the best conditions to professors. But Euro-
pean universities have not been attractive for top 
computer scientists and increasingly have also be-
come less attractive for students. Among well-
reputed old European universities, just a few have 
international visibility at the top. 

These findings support the importance of foster-
ing the reform agenda for European universities. 
This will require dedicated efforts to build up  
globally competitive PhD programs, more transpar-
ent and competitive recruitment procedures for re-
searchers, larger mobility of researchers. The 
creation of the European Research Council has been 
an important step in this direction, but more is need-
ed. The situation is rapidly changing, with these is-
sues on top of the reform agenda in many European 
countries. However, there is also very recent evi-
dence that the type of brain race that we have dis-
covered in the computer science is becoming 
widespread (Wildavsky, 2010). This will continue to 
put pressure on European higher education systems 
in the near future. 

Implications for innovation policy 

In the relevant historical period most European 
countries did not have (and many still do not have) 
the institutional features to support the IT innova-
tion ecology. Governments considered the comput-
er industry a sector that could be supported with 
the old model of industrial policy: a sort of com-
mand-and-control attitude, coupled with large fi-
nancial support to national champions. They did 
not create the legal, administrative and financial 
conditions for large-scale entrepreneurial activity in 
high technology.  

In historical terms, the innovation policies of large 
European countries have been largely influenced by 
the notion of national champions (Laredo and Mus-
tar, 2001). A case in point was the French industrial 
policy towards the IT industry, which culminated in 
the Plan Calcul. As stated by Mounier-Kuhn (1994: 
209): 

The Plan Calcul, one of the most ambitious 
technological programmes of the Fifth Repub-
lic, aimed at establishing an informatics indus-
try that would guarantee France independence 
from the American manufacturers. The gov-
ernment’s policy was to shape a ‘national 
champion’, a company, preferably big (if  
necessary, formed by ‘inducing’ several com-
panies to merge) which the state would support 
through R&D grants and preferential purchases. 

Although with less emphasis, these ideas have been 
shared by most governments for decades. 

 
Despite the widely held assumption 
that Europe is good at science but poor
at technology transfer (the so-called 
European paradox), it is the weakness 
in its scientific base that is responsible 
for its poor industrial performance 
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The search regime framework offers an explana-
tion for such policy failures. As we have demon-
strated, the competitiveness of the IT industry 
depends on ongoing, although complex and nonline-
ar, relations between industry and the academic en-
vironment. The search regime in computer science is 
based on a massive and fast effort of exploration of 
many competing directions, which are ex-ante ex-
tremely uncertain and risky. No centralized system, 
either in science and technology, could cope with 
such a regime.  

The main tool for the transformation of ideas into 
commercial innovations has been the creation and 
rapid growth of start-up companies. They constitute 
the industrial counterpart of a turbulent and prolifer-
ating search regime in science. It must be said that 
within a broad historical perspective, as the literature 
examined above clearly shows, the entrepreneurial 
process of creating new firms from research in the 
IT industry started very early in the USA, in the 
1950s and 1960s. The firms created in these periods 
had to survive in a harsh competitive environment, 
to access the risk capital market and eventually the 
stock exchange market, and to discover the recipe to 
combine cutting edge technology with manufactur-
ing and marketing skills. When the two radical inno-
vations of the PC (in the 1980s) and the internet (in 
the 1990s) were introduced, the US system already 
had several decades of trial-and-error, failures and 
institutional learning on which it was possible to 
capitalize. The entrepreneurial process started much 
later in Europe, partly because of the lack of compe-
tition, partly because of the poor ecology of ideas.  

Luckily enough, the recognition of the importance 
of young innovative firms in the industrial dynamics 
has been reached quite late in European innovation 
policy, but is now firmly established in the policy 
debate. The recent EU Industrial R&D Investment 
Scoreboard states clearly that: 

…the EU’s innovation gap is a consequence of 
its industrial structure in which new firms fail 
to play a significant role in the dynamics of the 
industry, especially in the high-tech sectors. 
(European Commission, 2010: 51) 

Our findings confirm quite neatly the need for a shift 
of policy focus, from merely supporting industrial 
research, perhaps with large involvement of large 
(but not globally competitive) European firms, to the 
creation of framework conditions for rapid growth of 
young innovative firms. 

Implications for productivity and the role of services 

There is a large policy debate in Europe on the caus-
es of the growth deficit with respect to the USA. 
There is also agreement on the role of a large 
productivity gap in the service sector, as demon-
strated by the Brookings Institution (Triplett and 
Bosworth, 2004) and recently by the KLEMS  

project (Timmer et al., 2010). When we come to the 
explanation of the productivity gap in the service 
sector, one commonly held view is that regulation 
plays a key role. Following the influential analysis 
by the OECD (Nicoletti and Scarpetta, 2003; Con-
way and Nicoletti, 2006) it has been suggested that 
strict product market regulations and lack of regula-
tory reforms underlie the poor productivity of some 
European countries, particularly in ICT-related sec-
tors. Strictly associated with product market regula-
tion, labour market regulation is called into play, as 
flexible labour markets in the USA facilitate the re-
deployment of the workforce and then the adoption 
of innovation much more than in Europe.  

We suggest a complementary interpretation, but 
one which reverses the causal path. It is because the 
service sector in the USA started to experiment 
with IT very early, in the 1960s and 1970s, that it 
adopted IT on a large scale in the 1990s. In turn, it 
was because IT immediately deployed large gains 
in the efficiency of operations that a steady increase 
in productivity was made compatible with accepta-
ble work conditions in an advanced society, without 
strong political opposition to liberal reforms. In 
fact, in the service sector the productivity may in-
crease either because a process of automation is 
implemented in the back office, or because there is 
an intensification of effort in the front office. The 
former invariably requires skillful implementation 
of IT, while the latter may be obtained by increas-
ing the working hours or the physical effort of 
workers and/or by lowering real wages. There is 
historical evidence from the literature discussed in 
this paper, that US companies in the IT industry 
started to work with large service firms as potential 
customers as early as the 1960s. While the most 
famous developments refer to the airline reservation 
system (the SABRE project developed in the period 
1957–1964), there are many other less known ex-
amples in the banking, insurance, wholesale, retail, 
transport or logistics industries. Why are these early 
experiences historically important? The reason lies 
again in the kind of institutional complementarity 
we find in this search regime: problems created by 
challenging requirements in the user sector generate 
a feedback on the creation of new ideas, and new 
ideas need a long period of incubation, adaptation 
and implementation in companies to deliver their 
full potential over productivity. In turn, the de-
ployment of new technology in services is inter-
twined with organizational changes, and only the 
combination between these two dimensions delivers 
large productivity gains (Brynjolfsson and Hitt, 
2000). 

Our conjecture (admittedly, only that) is that US 
service companies were ready to jump on the new 
waves of IT associated to the PC and the internet ex-
actly because they had already experienced the early 
benefits of the technology, while for European ser-
vice companies the learning curve, in the same peri-
od, was much less favourable. Consistent with this 
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conjecture is the robust finding that US multination-
als exhibit systematically higher productivity level 
than European ones (Bloom et al., 2007). If this con-
jecture were to be confirmed, then the policy impli-
cation would be somewhat less simplistic than just 
placing more flexibility in the labour market. 

Notes 

1.  The EU Report includes STMicroelectronics as incorporated in 
Switzerland, with an R&D expenditure of €1.065 billion. The 
company is, in fact, also owned by public shareholders from 
Italy and France. In the 2010 Scoreboard it is registered as in-
corporated in Netherlands. 

2.  CiteSeer was developed in 1997 at the NEC Research Insti-
tute, Princeton, NJ. The service then moved to the College of 
Information Sciences and Technology, Pennsylvania State 
University in 2003. The CiteSeer service has since been re-
placed by the ‘new generation’ or CiteSeerX, with collaboration 
from several universities worldwide. It is currently available at 
<http://citeseerx.ist.psu.edu/>, last accessed 13 July 2011. 
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